Deep Learning and Permutation Entropy in the Stratification of Patients with
Chagas Disease

Diego Rodrigo Cornejo, Antonio Ravelo-Garcia®, Esteban Alvarez*, Marfa Fernanda Rodriguez!,
Luz Alexandra Diaz', Victor Cabrera-Caso’, Dante Condori-Merma', Miguel Vizcardo Cornejo’

fEscuela Profesional de Fisica, Universidad Nacional de San Agustin de Arequipa, Pert
$Instituto for Technological Development and Innovation in Communications, Universidad de Las
Palmas de Gran Canaria, Spain
tEscuela de Fisica, Universidad Central de Venezuela, Venezuela

Abstract

Chagas disease is a life threatening illness that in the
last decades was becoming a public health problem be-
cause of the change in the epidemiological pattern. It may
be silent and asymptomatic in the chronic phase. Hence
the necessity of the development of early markers. To
achieve this, we propose a deep neural network architec-
ture in order to classify 292 patients into three groups: The
Control group with 83 volunteers, the CHI group with 102
patients with positive serology and no cardiac involvement
and the CH2 group with 107 patients with positive serol-
ogy and incipient heart failure. The used data comes from
24-hour ECG, the RR intervals from each subject was di-
vided in 288 frames of 5 minutes each. Then it was prepro-
cessed using permutation entropy obtaining the circadian
profile for each patient. And by applying PCA each patient
ended up represented by a vector of 144 entries. This was
in turn used for the training of the proposed NN architec-
ture. The classification performed with 91% accuracy and
an average of 92% precision, consisting in a great work of
classification validated by the AUC in each ROC curve. As
this results were obtained with a limited quantity of data,
this study can be improved provided with more samples,
making this model a tool for analyzing ECG in order to
try to do an early evaluation and diagnosis of a cardiac
compromise related to the generally silent chronic phase.

1. Introduction

There is always a need for cheaper and faster ways to
detect a disease. This need becomes more relevant if the
disease it is meant to detect is spreading to new regions and
faster. This is the case for the Chagas disease, caused by
the parasite Tripanozoma Cruzi [1], which is mainly found
in countries of Latin America with 6 to 7 million people
infected and dozens more at risk of infection in these areas
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according to the Pan American Health Organization [2].
At first Chagas disease was an endemic disease from Latin
America but in recent years it was spreading to other coun-
tries like Canada, the US, and some countries in Europe
[3]. This increasing rate of infection as well as the change
in the epidemiological pattern have its origins in various
factors apart from the vector transmission, including blood
transfusion and organ donation from undiagnosed people,
infection during pregnancy, travellers returning from Latin
America, population mobility and so on [4,5]. The clin-
ical evolution of the disease begins with an acute phase
that can last up to two months. Then follows a chronic
phase where 40% of the patients have cardiac compromise
(most commonly congestive heart failure) [6-9]. Previous
studies have used heart rate variability analysis in patients
with congestive heart failure. The proposed heart rate vari-
ability feature to be analyzed in this work, the permuta-
tion entropy, showed good results distinguishing patients
with Chagas disease from healthy people in particular [10].
Knowing that permutation entropy is a good way to find
notorious differences between these groups we propose the
use of a deep neural network. This has shown to be a useful
method for classifying data based on pattern recognition
[11-13]. Where medical data was classified remarkably
well with the multilayer perceptron (MLP), a type of neu-
ral network [14-16]. The purpose of this work is then to
implement an MLP architecture capable of correctly clas-
sify and distinguish healthy people from Chagasic patients
reliably based on the permutation entropy.

2. Database

The database used was provided by the Instituto
de Medicina Tropical of the Universidad Central de
Venezuela. It consists on the 24 hour ECG records
taken from people that underwent various evaluations in-
cluding Machado-Guerreiro serological test, electrocardio-
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gram, echocardiogram and chest X-ray. Based on the re-
sults of these evaluations each patient was classified into
one of three groups. The first one is the control group
which is conformed of 83 healthy people. The CH1 group
consists on 102 patients with positive serology but nor-
mal on the rest. Finally there are 107 patients with posi-
tive serology and, in addition, cardiac compromise evident
from one or more than one test (with incipient heart dis-
ease, first degree AV block, sinus bradycardia or RBBB),
conforming the CH2 group.

3. Method

For the preprocessing we used the Pan-Tompkins algo-
rithm [17] in order to obtain the QRS complexes from the
ECG. The data was then split in a total of 288 segments of
5 minutes each. Next, the tachogram (R-R intervals) was
generated for each five minute segment so that each pa-
tient is represented by a matrix with 288 rows containing
the R-R intervals. Finally the data was processed with an
adaptive filter [18].

The Permutation entropy (PE) was the non linear feature
selected to be the input of the neural network. This feature
measures the complexity and regularity of a time series and
was defined by Brand and Pompe as [19]:

H(n)= - p(r)logp() 8))

What PE takes in consideration are all the possible per-
mutation patterns (represented by 7) of consecutive values
and counts their relative apparition within the time series
p(7) and computes the entropy from that. In this case, the
PE is computed for each row of R-R intervals so that each
patient ends up with a vector of 288 values of PE over the
day.

The libraries and modules specialized in machine learn-
ing like Tensorflow were used (and the GUI implemented
within it, Keras), aside with Scikit-learn. In addition, basic
modules like numpy, pandas, itertools and matplotlib were
used.

As a first step, the PE data generated previously was im-
ported alongside with the corresponding labels for each pa-
tient (Control, CH1 or CH2) which were hot encoded for
future use in a neural network. A dimensionality reduction
process was considered and for that the principal compo-
nent analysis (PCA) was used. In this way it was possi-
ble to condense the information for each patient in shorter
vectors with the advantage to conserve the majority of the
information contained in the original PE vectors.

The data is then divided into two groups for training and
test, made up of 80% and 20% of the total data respec-
tively. Additionally, 25% of the training data was destined
for the validation of the model.

The neural network architecture consists on an input
layer of 144 neurons (product of the dimensionality reduc-
tion from the PCA), four hidden layers of 18, 14, 14 and
12 neurons respectively and the corresponding output layer
with 3 neurons. With a random initialization of weights
and biases.

The network was compiled using categorical crossen-
tropy as the loss function, Adam as the optimization algo-
rithm and categorical accuracy and the loss function itself
as the evaluation metrics. During the training, a batchsize
of 10 vectors per epoch was considered. And for the call-
backs, early stopping along with learning rate scheduler
were used with a reduction of the factor e**0.0001 that
can be changed later. The number of epochs for which the
network is trained is 20.

Finally, we obtain the training and validation graphs
over the epochs. From the results on the test set we also
get the confusion matrix showing the correct and incor-
rect classification for each group and the ROC curve for
the classifier from which we can obtain the respective area
under the curve.

4. Results

The first results obtained were the graphs of the loss
function and categorical accuracy shown in figures 1 and 2
over 20 epochs. The loss function shows a decreasing be-
haviour in both train and validation sets. As the loss func-
tion serves to indicate the error made by the neural network
this means that it is improving over the epochs. Although
both curves are following the same trend, the two separate
from each other.
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Figure 1. Loss function trough the epochs

The same can be said about the categorical accuracy,
where both curves are increasing (which again, is a sign of
the improvement of the network) but separating from each
other, though not as much as in the case of the loss func-
tion. Both of these curves reach acceptable values (around
0.8 for the validation set and around 1 for the training set
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by the end of the training of the neural network)
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So the more the ROC curve approaches the top left corner
of the graph the better the classification is. There is also a
referential diagonal line that behaves like a classifier that
labels each individual randomly. The good classification of
the neural network can be clearly seen from all the curves
in the figure.

Figure 2. Categorical accuracy trough the epochs

The results for the classification on the test set is con-
tained in the confusion matrix (figure 3). It can be seen
from the matrix that there was an overall good classifica-
tion, only with a maximum of two subjects classified in-
correctly for each class. For instance, no subject belonging
to CONTROL group was misclassified. Quantitatively the
precision and recall can be computed for each group from
the confusion matrix, and from these two metric the F1-
score can also be computed. CONTROL group got 0.88
of precision, 1 of recall and thus the Fl-score is 0.93. In
the case of CH1 group the precision is 0.93, the recall is
0.87 and the Fl-score is 0.90. Finally for the CH2 group
the precision, recall and F1-score are 0.95, 0.86 and 0.90
respectively.
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Figure 3. Confusion matrix for the test group

For further analysis, the different ROC curves are plot-
ted in figure 4 where we used a one-vs-all approach in the
curves referencing individual groups. In an ROC plot the
x-axis is the false positive rate or 1-specificity, a quantity
that we want to minimize. The true positive rate or sensi-
tivity is plotted in the y-axis which we want to maximize.
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Figure 4. Individual, macro and micro average ROC
curves

One last metric worth analysing from figure 4 is the
AUC wich stands for area under the curve. As (0,1) is the
optimal point in an ROC, 1 is the maximum AUC value as
well as the best for a classifier. In the figure each ROC has
its own AUC, and all values for AUC vary between 0.95
and 0.96 which is great and a sign of good classification
work.

5. Discussion and conclusions

The neural network used with the specific proposed ar-
chitecture performed good as the results are mainly posi-
tive in the sense that the metrics chosen (precision, recall,
F1 score for each group, as well as the accuracy of the
model and the AUC from all the distinct ROC) have all
high values.

However, it is not perfect and one of the main problems
one can see from this classifier is the fact that the curves
for training and validation are not always close for both
loss function and categorical accuracy. This suggests that
there is a problem of overfitting that has to be revised. This
problem can be overcome in multiple ways. For example
by selecting different proportions in the way the data was
split for the training of the network. Also the addition of
new data is always helpful. And one more thing we can do
is to combine the PE values with other significant features
like ApEn.

Considering the limitations, this neural network did well
and can be improved as discussed. Hence constituting a
promising way to diagnose and stratify patients with Cha-
gas disease and even expand its use to other important con-
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ditions related to the heart.
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